Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Environ Manage ; 359: 121003, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692032

ABSTRACT

Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.

2.
Pest Manag Sci ; 80(3): 1193-1205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37888855

ABSTRACT

BACKGROUND: Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS: Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION: Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.


Subject(s)
Hemiptera , Metarhizium , Oryza , Plant Viruses , Reoviridae , Animals , Metarhizium/physiology , Hemiptera/physiology , RNA, Double-Stranded , Immunity , Oryza/genetics
3.
Sci Total Environ ; 912: 168850, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043811

ABSTRACT

Microbial community assemblage includes microorganisms from the three domains including Bacteria, Archaea, and Eukarya (Fungi), which play a crucial role in geochemical cycles of metal(loid)s in mine tailings. Mine tailings harbor vast proportions of metal(loid)s, representing a unique source of co-contamination of metal(loid)s that threaten the environment. The elucidation of the assembly patterns of microbial communities in mining-impacted ecospheres has received little attention. To decipher the microbial community assembly processes, the microbial communities from the five sites of the Dabaoshan mine-impacted area were profiled by the MiSeq sequencing of 16S rRNA (Bacteria and Archaea) genes and internal transcribed spacers (Fungi). Results indicated that the coexistence of 31 bacterial, 10 fungal, and 3 archaeal phyla, were mainly dominated by Mucilaginibacter, Cladophialophora, and Candidatus Nitrosotalea, respectively. The distribution of microorganisms was controlled by deterministic processes. The combination of Cu, Pb, and Sb was the main factor explaining the structure of microbial communities. Functional predicting analysis of bacteria and archaea based on the phylogenetic investigation of communities by reconstruction of unobserved states analyses revealed that the metabolic pathways related to arsenite transporter, arsenate reductase, and FeS cluster were important for metal detoxification. Furthermore, the ecological guilds (pathogens, symbiotrophs, and saprotrophs) of fungal communities explained 44.5 % of functional prediction. In addition, metal-induced oxidative stress may be alleviated by antioxidant enzymes of fungi communities, such as catalase. Such information provides new insights into the microbial assembly rules in co-contaminated sites.


Subject(s)
Lead , Microbiota , RNA, Ribosomal, 16S/genetics , Phylogeny , Bacteria/genetics , Archaea , Zinc , China , Soil Microbiology
4.
Am J Cancer Res ; 13(8): 3482-3499, 2023.
Article in English | MEDLINE | ID: mdl-37693144

ABSTRACT

Angiogenesis is essential for the growth and metastasis of several malignant tumors including colorectal cancer (CRC). The molecular mechanism underlying CRC angiogenesis has not been fully elucidated. Emerging evidence indicates that secreted microRNAs (miRNAs) may mediate the intercellular communication between tumor cells and neighboring endothelial cells to regulate tumor angiogenesis. In addition, exosomes have been shown to carry and deliver miRNAs to regulate angiogenesis. miRNA N-72 is a novel miRNA that plays a regulatory role in the EGF-induced migration of human amnion mesenchymal stem cells. However, the relation between miRNA N-72 and cancer remains unclear. We here found that CRC cells could secrete miRNA N-72. A high miRNA N-72 level was detected in the serum of CRC patients and the cultured CRC cells. Moreover, the CRC cell-secreted miRNA N-72 could promote the migration, tubulogenesis, and permeability of endothelial cells. In addition, the mouse xenograft model was used to verify the facilitating effects of miRNA N-72 on CRC growth, angiogenesis, and metastasis in vivo. Further mechanism analysis revealed that CRC cell-secreted miRNA N-72 could be delivered into endothelial cells via exosomes, which then inhibited cell junctions of endothelial cells by targeting CLDN18 and consequently promoted angiogenesis. Our findings reveal a novel mechanism of CRC angiogenesis and highlight the potential of secreted miRNA N-72 as a therapeutic target and a biomarker for CRC.

5.
Environ Sci Pollut Res Int ; 30(47): 104753-104766, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37707732

ABSTRACT

Management of tailings at metal mine smelter sites can reduce the potential hazards associated with exposure to toxic metal(loid)s and residual organic flotation reagents. In addition, microbes in the tailings harboring multi-resistance genes (e.g., tolerance to multiple antimicrobial agents) can cause high rates of morbidity and global economic problems. The potential co-selection mechanisms of antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) during tailings sulfate-reducing bacteria (SRB) treatment have been poorly investigated. Samples were collected from a nonferrous metal mine tailing site treated with an established SRB protocol and were analyzed for selected geochemical properties and high throughput sequencing of 16S rRNA gene barcoding. Based on the shotgun metagenomic analysis, the bacterial domain was dominant in nonferrous metal(loid)-rich tailings treated with SRB for 12 months. KEGGs related to ARGs and MRGs were detected. Thiobacillus and Sphingomonas were the main genera carrying the bacA and mexEF resistance operons, along with Sulfuricella which were also found as the main genera carrying MRGs. The SRB treatment may mediate the distribution of numerous resistance genes. KOs based on the metagenomic database indicated that ARGs (mexNW, merD, sul, and bla) and MRGs (czcABCR and copRS genes) were found on the same contig. The SRB strains (Desulfosporosinus and Desulfotomaculum), and the acidophilic strain Acidiphilium significantly contributed to the distribution of sul genes. The functional metabolic pathways related to siderophores metabolism were largely from anaerobic genera of Streptomyces and Microbacterium. The presence of arsenate reductase, metal efflux pump, and Fe transport genes indicated that SRB treatment plays a key role in the metal(loid)s transformation. Overall, our findings show that bio-treatment is an effective tool for managing ARGs/MRGs and metals in tailings that contain numerous metal(loid) contaminants.


Subject(s)
Bacteria , Metals , RNA, Ribosomal, 16S , Metals/analysis , Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , China , Sulfates/analysis , Genes, Bacterial
6.
Food Funct ; 14(10): 4621-4631, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37158592

ABSTRACT

The abnormal accumulation of fused in sarcoma (FUS) is a pathological hallmark in a proportion of patients with frontotemporal dementia and amyotrophic lateral sclerosis. Therefore, the clearance of FUS aggregates is a possible therapeutic strategy for FUS-associated neurodegenerative diseases. This study reports that curcumin can strongly suppress FUS droplet formation and stress granule aggregation of FUS. Fluorescence spectra and isothermal titration calorimetry showed that curcumin can bind FUS through hydrophobic interactions, thereby reducing the ß-sheet content of FUS. Aggregated FUS sequesters pyruvate kinase, leading to reduced ATP levels. However, results from a metabolomics study revealed that curcumin changed the metabolism pattern and differentially expressed metabolites were enriched in glycolysis. Curcumin attenuated FUS aggregation-mediated sequestration of pyruvate kinase and restored cellular metabolism, consequently increasing ATP levels. These results indicate that curcumin is a potent inhibitor of FUS liquid-liquid phase separation and provide novel insights into the effect of curcumin in ameliorating abnormal metabolism.


Subject(s)
Curcumin , Frontotemporal Dementia , Sarcoma , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Curcumin/pharmacology , Frontotemporal Dementia/metabolism , Adenosine Triphosphate , Mutation , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6408-6413, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38211998

ABSTRACT

The chemical constituents of Helleborus thibetanus were isolated and purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and semi-preparative RP-HPLC, and the structures of all compounds were identified by modern spectrographic technology(MS, NMR). The MTT method was used to measure the cytotoxicity of compounds 1-8. Twelve compounds were isolated from the roots and rhizomes of H. thibetanus and were identified as(25R)-22ß,25-expoxy-26-[(O-ß-D-glucopyranosyl)oxy]-1ß,3ß-dihydroxyfurosta-5-en(1), ß-sitosterol myristate(2), ß-sitosterol lactate(3), ß-sitosterol 3-O-ß-D-glucopyrannoside(4), 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one(5), 1,3,5-trimethoxybenzene(6), 7,8-dimethylbenzo pteridine-2,4(1H,3H)-dione(7), 1H-indole-3-carboxylic acid(8), p-hydroxy cinnamic acid(9), lauric acid(10), n-butyl α-L-arabinofuranoside(11) and methyl-α-D-fructofuranoside(12), respectively. Among them, compound 1 is a new compound and named thibetanoside L; compounds 2, 5-8, 11 are first isolated from the family Ranunculaceae; compound 12 is isolated from the genus Helleborus for the first time. The results of MTT assay showed that the IC_(50) values of compounds 1-8 against HepG2 and HCT116 cells were greater than 100 µmol·L~(-1).


Subject(s)
Helleborus , Helleborus/chemistry , Molecular Structure , Plant Roots/chemistry , Rhizome/chemistry , Magnetic Resonance Spectroscopy
8.
Eur J Pharmacol ; 927: 175057, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35636525

ABSTRACT

Hypertension is a major risk factor for cardiovascular disease and Chinese herb monomers could provide new structural skeletons for anti-hypertension new drug development. Paeonol is a Chinese herbal monomer extracted from Cortex moutan, exhibited some anti-hypertensive activity. The study focused on the structural optimization of paeonol to provide promising lead compounds for anti-hypertension new drug development. Herein, twelve new paeonol derivatives (PD) were designed and synthesized and their vasodilation activity was evaluated by in vitro vasodilation drug screening platform based on Myograph. Its anti-hypertension activity, PD-C302 (2-hydroxy-4-methoxyvalerophenone) as a representative with the optimal vasodilation activity, was determined by its response to blood pressure in spontaneously hypertensive rats (SHR) in vivo. Moreover, its molecular mechanism was probed by the vasodilation activity of rat superior mesenteric artery rings with or without endothelium pre-contracted by potassium chloride (KCl) or phenylephrine hydrochloride (PE). It was indicated that PD-C302 significantly reduced the blood pressure in SHR, which would involve in PD-C302-induced vasodilation. Furthermore, endothelium-dependent pathways and endothelium-independent pathways both contributed importantly to PD-C302-induced vasodilation at low concentration of PD-C302. Endothelium-independent pathways (vascular smooth muscle cell-mediated vasodilation), were mainly responsible for the PD-C302-induced vasodilation at high concentration of PD-C302, which involved in opening multiple K+ channels to restrain Ca2+ channels, and then triggered vasodilation to reduce blood pressure. PD-C302 has a simple structure and favorable anti-hypertensive activity in vivo, which could be a promising lead compound for anti-hypertension new drug development.


Subject(s)
Hypertension , Vasodilation , Acetophenones , Animals , Antihypertensive Agents/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Endothelium, Vascular , Potassium Chloride/pharmacology , Rats , Rats, Inbred SHR
9.
Ying Yong Sheng Tai Xue Bao ; 33(4): 909-914, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35543041

ABSTRACT

Cosmic-ray neutron sensing (CRNS) method was recently used to monitor soil moisture in farmland. But its spatial representation and accuracy needs further study. A field experiment was carried out to evaluate the applicability of CRNS for monitoring soil moisture in winter wheat farmland of the North China Plain. The spatial weight of CRNS detector was simulated by the ultra rapid adaptable neutron-only simulation for environmental research (URANOS) model and the CRNS-estimated soil moisture was compared with the measured soil moisture. The results showed that the CRNS detection radius obtained by URANOS simulation was 127-139 m, and that the weight distribution showed good agreement with the theoretical value. The determination coefficient (R2) and the root-mean-square error (RMSE) between CRNS-estimated soil moisture and measured soil moisture reached 0.64 and 0.05 cm3·cm-3, respectively. The CRNS-estimated soil moisture was sensitive to the changes of overall moisture in the detection area, with seasonal variation of measurement accuracy. In conclusion, cosmic-ray neutron sensing is a continuous and reliable method for monitoring total water content in winter wheat fields.


Subject(s)
Soil , Water , China , Farms , Neutrons , Triticum , Water/analysis
10.
Org Lett ; 24(11): 2248-2252, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35271283

ABSTRACT

An attractive palladium-catalyzed reductive aminocarbonylation reaction of allylic ethers has been explored for the synthesis of 3-alkenylquinolin-2(1H)-one derivatives. With Mo(CO)6 as both CO surrogate and reductant, a variety of 3-alkenylquinolin-2(1H)-ones were obtained in good to excellent yields from o-iodophenol-derived allyl ethers with o-nitrobenzaldehydes as the nitrogen sources. This reaction proceeds through a cascade pathway and does not rely on high-pressure CO gas as needed in former allylic carbonylation reactions. This strategy provides a new pathway for the construction of 3-alkenylquinolin-2(1H)-ones.

11.
Genet Res (Camb) ; 2022: 8319396, 2022.
Article in English | MEDLINE | ID: mdl-35185392

ABSTRACT

Labs as guide dogs or sniffer dogs in usage have been introduced into China for more than 20 years. These two types of working dogs own blunt or acute olfactory senses, which have been obtained by artificial selection in relatively closed populations. In order to attain stable olfactory attributes and meet use-oriented demands, Chinese breeders keep doing the same artificial selection. Though olfactory behavior is canine genetic behavior, genotypes of OR genes formed by breeding schemes are largely unknown. Here, we characterized 26 SNPs, 2 deletions, and 2 insertions of 7 OR genes between sniffer dogs and guide dogs in order to find out the candidate alleles associated with working specific traits. The results showed that there were candidate functional SNP alleles in one locus that had statistically severely significant differences between the two subpopulations. Furthermore, the levels of polymorphism were not high in all loci and linkage disequilibrium only happened within one OR gene. Hardy-Weinberg equilibrium (HWE) tests showed that there was a higher ratio not in HWE and lower FST within the two working dog populations. We conclude that artificial selection in working capacities has acted on SNP alleles of OR genes in a dog breed and driven the evolution in compliance with people's intentions though the changes are limited in decades of strategic breeding.


Subject(s)
Polymorphism, Single Nucleotide , Receptors, Odorant , Alleles , Animals , Dogs , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide/genetics , Receptors, Odorant/genetics
12.
Org Biomol Chem ; 19(16): 3584-3588, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33908566

ABSTRACT

An efficient carbonylative procedure for the synthesis of 3-arylquinoin-2(1H)-ones has been established. Through a palladium-catalyzed aminocarbonylation of benzyl chlorides with anthranils, a variety of 3-arylquinoin-2(1H)-one products were obtained in moderate to excellent yields with good functional group tolerance.

13.
Chem Biodivers ; 18(5): e2001069, 2021 May.
Article in English | MEDLINE | ID: mdl-33855794

ABSTRACT

Breast cancer is one of the most common cancer with high morbidity and mortality in women. This study aimed to explore the potential mechanism of costunolide inducing MCF-7 cells apoptosis by multi-spectroscopy, molecular docking, and cell experiments. The results manifested that costunolide interacted with calf thymus DNA (ct-DNA) in a spontaneous manner, and the minor groove as the preferential binding mode. Furthermore, costunolide inhibited cell proliferation and colony formation. Hoechst 33258 staining showed that cell apoptosis induced by costunolide might be related to DNA damage. The apoptosis mechanism relied on regulating the protein expression of Bax, Bcl-2, p53, Caspase-3 and the activation of p38MAPK and nuclear factor κB (NF-κB) pathways. This study will provide some experimental basis and potential therapeutic strategy for breast cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Molecular Docking Simulation , Sesquiterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cattle , Cell Proliferation/drug effects , DNA/chemistry , DNA/drug effects , DNA Damage , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Sesquiterpenes/chemistry , Spectrophotometry, Ultraviolet
14.
Molecules ; 26(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671270

ABSTRACT

The aim of this work was to characterize biogenic amines (BAs) in different parts of Lycium barbarum L. using HPLC with dansyl chloride derivatization, and jointly, to provide referential data for further exploration and utilization of Lycium barbarum L. The linear correlation coefficients for all BAs were above 0.9989. The limits of detection and quantification were 0.015-0.075 and 0.05-0.25 µg/mL, respectively. The relative standard deviations for the intra-day and inter-day precision were 0.66-2.69% and 0.91-4.38%. The described method has good repeatability and intermediate precision for the quantitative determination of BAs in different parts of Lycium barbarum L. Satisfactory recovery for all amines was obtained (79.3-110.3%). The result showed that there were four kinds of BAs. The highest putrescine content (20.9 ± 3.2 mg/kg) was found in the flower. The highest histamine content (102.7 ± 5.8 mg/kg) was detected in the bark, and the highest spermidine (13.3 ± 1.6 mg/kg) and spermine (23.7 ± 2.0 mg/kg) contents were detected in the young leaves. The high histamine (HIS) content in the bark may be one of the reasons why all of the parts of Lycium barbarum L., except the bark, are used for medicine or food in China. Meanwhile, the issue of the high concentration of HIS should be considered when exploiting or utilizing the bark of Lycium barbarum L.


Subject(s)
Biogenic Amines/analysis , Chromatography, High Pressure Liquid/methods , Dansyl Compounds/chemistry , Lycium/chemistry , Mass Spectrometry , Reference Standards , Reproducibility of Results , Solutions
15.
Environ Pollut ; 273: 115667, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33497944

ABSTRACT

Mine tailings sites are considered as a continuous source of discharged metal(loid)s and residual organic flotation reagents. They are extremely toxic environments representing unique ecological niches for microbial communities. Mine tailings as a source of multi-resistance genes have been poorly investigated. Metagenomic analysis for four active nonferrous metal(loid) tailings sites with different environmental parameters was conducted. The abundance of Thiobacillus, able to tolerate acidity and showing iron- and sulfur/sulfide oxidation capacities, was significantly different (p < 0.05) between acid and neutral tailings sites. Correlation analyses showed that Zn, Pb, TP, Cd, and Cu were the main drivers influencing the bacterial compositions. Multi-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs), such as baca and copA, were found to be co-selected by high concentrations of metal(loid)s tailings. The main contributors to different distributions of MRGs were Thiobacillus and Nocardioides genus, while genera with low abundance (<0.1%) were the main contributors for ARGs. Functional metabolic pathways related to Fe-S metabolism, polycyclic aromatic hydrocarbons (PAHs) degradation and acid stress were largely from Altererythrobacter, Lysobacter, and Thiobacillus, respectively. Such information provides new insights on active tailings with highly toxic contaminants. Short-term metal(loid) exposure of microorganism in active nonferrous metal(loid) tailings contribute to the co-occurrence of ARGs and MRGs, and aggravation of tailings acidification. Our results recommend that the management of microorganisms involved in acid tolerance and metal/antibiotic resistance is of key importance for in-suit treatment of the continuous discharge of tailings with multiple metal(loid) contaminants into impoundments.

16.
Int J Biol Macromol ; 152: 981-989, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31765755

ABSTRACT

The inhibition of α-glucosidase activity is a prospective approach to prevent postprandial hyperglycemia. As two flavonoids extracted from citrus fruits, eriocitrin and eriodictyol have similar structures and show multiple pharmacological activities. In order to investigate the effects of flavonoids structure on enzyme inhibition, spectroscopy and molecular docking analysis were used. Saccharomyces cerevisiae α-glucosidase (GH13) was used for studying the inhibitory mechanism by multi-spectroscopic analysis. Results indicated that they could quench the intrinsic fluorescence of α-glucosidase, the binding constants at 298 K were (7.02 ± 0.22) × 104 and (4.57 ± 0.16) × 104 L mol-1, respectively. The interaction between them with α-glucosidase were mainly driven by hydrophobic interaction, they induced conformational changes of α-glucosidase. The human α-glucosidase (C-terminal maltase-glucoamylase, GH31) was used in the molecular docking analysis to determine the interaction of eriocitrin and eriodictyol with the α-glucosidase. The results revealed that they could bind with α-glucosidase and might cause the decrease of α-glucosidase activity. The inhibitory effect of eriocitrin was stronger than that of eriodictyol, which might be due to the position and amount of hydroxyl groups. This work confirmed two novel α-glucosidase inhibitors and provided the structure-function relationship of flavonoids in inhibition of α-glucosidase activity.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Flavonoids/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Humans , Protein Conformation , Spectrum Analysis , alpha-Glucosidases/chemistry
17.
Chin J Nat Med ; 17(10): 778-784, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31703758

ABSTRACT

Thibetanosides E-H (1-4), four new steroidal constituents including three rare sulfonates (2-4), were isolated from the roots and rhizomes of Helleborus thibetanus, together with nine known steroidal compounds (5-13). Their structures were elucidated by detailed spectroscopic analysis, including 1D and 2D NMR techniques and chemical evidence. In this study, compounds 2-13 were evaluated for their cytotoxic activities against HCT116, A549 and HepG2 tumor cell lines in vitro. Among them, compound 8 (thibetanoside C) showed cytotoxicities against A549 cells(IC50 39.6 ± 1.9 µmol·L-1) and HepG2 cells(IC50 41.5 ± 1.1 µmol·L-1), respectively. Compound 9 (23S, 24S)-24-[(O-ß-D-fucopyranosyl)oxy]-3ß, 23-dihydroxy-spirosta-5, 25(27)-diene-1ß-ylO-(4-O-acetyl- α-L-rhamnopyranosyl)-(1→2)-O-[ß-D-xylopyranosyl-(1→3)]-α-L-arabinopyranoside) showed cytotoxicity against HCT116 cells(IC50 33.6 ± 2.1 µmol·L-1).


Subject(s)
Cytotoxins/chemistry , Drugs, Chinese Herbal/chemistry , Helleborus/chemistry , Steroids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxins/isolation & purification , Cytotoxins/toxicity , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/toxicity , Humans , Molecular Structure , Plant Roots/chemistry , Steroids/isolation & purification , Steroids/pharmacology
18.
Environ Pollut ; 255(Pt 2): 113165, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546074

ABSTRACT

Nonferrous mine tailings have caused serious problems of co-contamination with metal(loid)s. It is still a global challenge to cost-effectively manage and mitigate the effect of the mining wastes. We conducted an in-situ bio-treatment of non-ferrous metal(loid) tailings using a microbial consortium of sulfate reducing bacteria (SRB). During the bio-treatment, the transformation of metal(loid)s (such as Cu, Fe, Mn, Pb, Sb, and Zn) into oxidizable and residual fractions in the subsurface tended to be higher than that observed in the surface. As well the mineral compositions changed becoming more complex, indicating that the sulfur reducing process of bio-treatment shaped the bio-transformation of metal(loid)s. The added SRB genera, especially Desulfotomaculum genus, colonized the tailings suggesting the coalescence of SRB consortia with indigenous communities of tailings. Such observation provides new insights for understanding the functional microbial community coalescence applied to bio-treatment. PICRUSt analysis revealed presence of genes involved in sulfate reduction, both assimilatory and dissimilatory. The potential for the utilization of both inorganic and organic sulfur compounds as S source, as well as the presence of sulfite oxidation genes indicated that SRB play an important role in the transformation of metal(loid)s. We advocate that the management of microorganisms involved in S-cycle is of paramount importance for the in situ bio-treatment of tailings, which provide new insights for the implementation of bio-treatments for mitigating the effect of tailings.


Subject(s)
Biodegradation, Environmental , Metals/metabolism , Bacteria/genetics , Metals/analysis , Microbial Consortia , Microbiota , Minerals , Mining , Oxidation-Reduction
19.
Chin J Nat Med ; 17(8): 624-630, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472900

ABSTRACT

Five new polyhydroxylated furostanol saponins were isolated from the roots and rhizomes of Tupistra chinensis, and their structures were determined as tupistrosides J-N (1-5), together with four known furostanol saponins (6-9), on the basis of physico-chemical properties and spectral analysis. Among them, compounds 3 and 5 showed cytotoxicity against human cancer cell lines SW620 with IC50 values of 72.5 ± 2.4 and 77.3 ± 2.5 µmol·L-1, respectively. Compound 4 showed cytotoxicity against human cancer cell line HepG2 with IC50 value of 88.6 ± 2.1 µmol·L-1.


Subject(s)
Antineoplastic Agents/chemistry , Liliaceae/chemistry , Saponins/chemistry , Sterols/chemistry , A549 Cells , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Plant Extracts/chemistry , Rhizome/chemistry , Saponins/pharmacology , Sterols/pharmacology
20.
Int J Biol Macromol ; 134: 344-353, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31075333

ABSTRACT

High glucose can lead to toxicity on islet ß cells. The protective effects of a novel Lentinus edodes mycelia polysaccharide (LMP) on INS-1 cells damaged by glucose were investigated. Cell viability, lactate dehydrogenase (LDH) release, cell apoptosis, intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were detected. P38 MAPK, JNKand NF-κB pathways were analyzed to reveal the inhibitory mechanism of LMP on glucose-induced INS-1 cells toxicity. The results showed that LMP could decrease cellular oxidative stress, reduce intracellular ROS levels, decrease MDA content and increase SOD activity. Furthermore, the glucose-induced cell apoptosis in cells were inhibited by regulating the expression of Bax, Bcl-2, cleaved caspase­3 and cleaved caspase­1. Cell signaling pathway analysis revealed that LMP could inhibit the activation of p38 MAPK, JNK, NF-κB pathways and activate Nrf2 pathway. To further explore the possible transportation mechanism of LMP with human serum albumin (HSA), ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to evaluate the interaction between LMP and HSA. The results showed that LMP-HSA complex was formed, which would be helpful for explaining the transportation mechanism in vivo. These results suggested that LMP might be a new therapeutic candidate to alleviate the high glucose toxicity.


Subject(s)
Glucose/pharmacology , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Polysaccharides/metabolism , Polysaccharides/pharmacology , Serum Albumin, Human/metabolism , Shiitake Mushrooms/chemistry , Apoptosis/drug effects , Biological Transport , Cell Line , Cell Survival/drug effects , Cytoprotection/drug effects , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , L-Lactate Dehydrogenase/metabolism , MAP Kinase Signaling System/drug effects , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Protein Conformation/drug effects , Reactive Oxygen Species/metabolism , Serum Albumin, Human/chemistry , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...